3.633 \(\int \frac{d+e x}{(a+b (d+e x)^2+c (d+e x)^4)^3} \, dx\)

Optimal. Leaf size=150 \[ -\frac{6 c^2 \tanh ^{-1}\left (\frac{b+2 c (d+e x)^2}{\sqrt{b^2-4 a c}}\right )}{e \left (b^2-4 a c\right )^{5/2}}+\frac{3 c \left (b+2 c (d+e x)^2\right )}{2 e \left (b^2-4 a c\right )^2 \left (a+b (d+e x)^2+c (d+e x)^4\right )}-\frac{b+2 c (d+e x)^2}{4 e \left (b^2-4 a c\right ) \left (a+b (d+e x)^2+c (d+e x)^4\right )^2} \]

[Out]

-(b + 2*c*(d + e*x)^2)/(4*(b^2 - 4*a*c)*e*(a + b*(d + e*x)^2 + c*(d + e*x)^4)^2) + (3*c*(b + 2*c*(d + e*x)^2))
/(2*(b^2 - 4*a*c)^2*e*(a + b*(d + e*x)^2 + c*(d + e*x)^4)) - (6*c^2*ArcTanh[(b + 2*c*(d + e*x)^2)/Sqrt[b^2 - 4
*a*c]])/((b^2 - 4*a*c)^(5/2)*e)

________________________________________________________________________________________

Rubi [A]  time = 0.184865, antiderivative size = 150, normalized size of antiderivative = 1., number of steps used = 6, number of rules used = 5, integrand size = 28, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.179, Rules used = {1142, 1107, 614, 618, 206} \[ -\frac{6 c^2 \tanh ^{-1}\left (\frac{b+2 c (d+e x)^2}{\sqrt{b^2-4 a c}}\right )}{e \left (b^2-4 a c\right )^{5/2}}+\frac{3 c \left (b+2 c (d+e x)^2\right )}{2 e \left (b^2-4 a c\right )^2 \left (a+b (d+e x)^2+c (d+e x)^4\right )}-\frac{b+2 c (d+e x)^2}{4 e \left (b^2-4 a c\right ) \left (a+b (d+e x)^2+c (d+e x)^4\right )^2} \]

Antiderivative was successfully verified.

[In]

Int[(d + e*x)/(a + b*(d + e*x)^2 + c*(d + e*x)^4)^3,x]

[Out]

-(b + 2*c*(d + e*x)^2)/(4*(b^2 - 4*a*c)*e*(a + b*(d + e*x)^2 + c*(d + e*x)^4)^2) + (3*c*(b + 2*c*(d + e*x)^2))
/(2*(b^2 - 4*a*c)^2*e*(a + b*(d + e*x)^2 + c*(d + e*x)^4)) - (6*c^2*ArcTanh[(b + 2*c*(d + e*x)^2)/Sqrt[b^2 - 4
*a*c]])/((b^2 - 4*a*c)^(5/2)*e)

Rule 1142

Int[(u_)^(m_.)*((a_.) + (b_.)*(v_)^2 + (c_.)*(v_)^4)^(p_.), x_Symbol] :> Dist[u^m/(Coefficient[v, x, 1]*v^m),
Subst[Int[x^m*(a + b*x^2 + c*x^(2*2))^p, x], x, v], x] /; FreeQ[{a, b, c, m, p}, x] && LinearPairQ[u, v, x]

Rule 1107

Int[(x_)*((a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4)^(p_.), x_Symbol] :> Dist[1/2, Subst[Int[(a + b*x + c*x^2)^p, x],
 x, x^2], x] /; FreeQ[{a, b, c, p}, x]

Rule 614

Int[((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_), x_Symbol] :> Simp[((b + 2*c*x)*(a + b*x + c*x^2)^(p + 1))/((p +
1)*(b^2 - 4*a*c)), x] - Dist[(2*c*(2*p + 3))/((p + 1)*(b^2 - 4*a*c)), Int[(a + b*x + c*x^2)^(p + 1), x], x] /;
 FreeQ[{a, b, c}, x] && NeQ[b^2 - 4*a*c, 0] && LtQ[p, -1] && NeQ[p, -3/2] && IntegerQ[4*p]

Rule 618

Int[((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(-1), x_Symbol] :> Dist[-2, Subst[Int[1/Simp[b^2 - 4*a*c - x^2, x], x]
, x, b + 2*c*x], x] /; FreeQ[{a, b, c}, x] && NeQ[b^2 - 4*a*c, 0]

Rule 206

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1*ArcTanh[(Rt[-b, 2]*x)/Rt[a, 2]])/(Rt[a, 2]*Rt[-b, 2]), x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rubi steps

\begin{align*} \int \frac{d+e x}{\left (a+b (d+e x)^2+c (d+e x)^4\right )^3} \, dx &=\frac{\operatorname{Subst}\left (\int \frac{x}{\left (a+b x^2+c x^4\right )^3} \, dx,x,d+e x\right )}{e}\\ &=\frac{\operatorname{Subst}\left (\int \frac{1}{\left (a+b x+c x^2\right )^3} \, dx,x,(d+e x)^2\right )}{2 e}\\ &=-\frac{b+2 c (d+e x)^2}{4 \left (b^2-4 a c\right ) e \left (a+b (d+e x)^2+c (d+e x)^4\right )^2}-\frac{(3 c) \operatorname{Subst}\left (\int \frac{1}{\left (a+b x+c x^2\right )^2} \, dx,x,(d+e x)^2\right )}{2 \left (b^2-4 a c\right ) e}\\ &=-\frac{b+2 c (d+e x)^2}{4 \left (b^2-4 a c\right ) e \left (a+b (d+e x)^2+c (d+e x)^4\right )^2}+\frac{3 c \left (b+2 c (d+e x)^2\right )}{2 \left (b^2-4 a c\right )^2 e \left (a+b (d+e x)^2+c (d+e x)^4\right )}+\frac{\left (3 c^2\right ) \operatorname{Subst}\left (\int \frac{1}{a+b x+c x^2} \, dx,x,(d+e x)^2\right )}{\left (b^2-4 a c\right )^2 e}\\ &=-\frac{b+2 c (d+e x)^2}{4 \left (b^2-4 a c\right ) e \left (a+b (d+e x)^2+c (d+e x)^4\right )^2}+\frac{3 c \left (b+2 c (d+e x)^2\right )}{2 \left (b^2-4 a c\right )^2 e \left (a+b (d+e x)^2+c (d+e x)^4\right )}-\frac{\left (6 c^2\right ) \operatorname{Subst}\left (\int \frac{1}{b^2-4 a c-x^2} \, dx,x,b+2 c (d+e x)^2\right )}{\left (b^2-4 a c\right )^2 e}\\ &=-\frac{b+2 c (d+e x)^2}{4 \left (b^2-4 a c\right ) e \left (a+b (d+e x)^2+c (d+e x)^4\right )^2}+\frac{3 c \left (b+2 c (d+e x)^2\right )}{2 \left (b^2-4 a c\right )^2 e \left (a+b (d+e x)^2+c (d+e x)^4\right )}-\frac{6 c^2 \tanh ^{-1}\left (\frac{b+2 c (d+e x)^2}{\sqrt{b^2-4 a c}}\right )}{\left (b^2-4 a c\right )^{5/2} e}\\ \end{align*}

Mathematica [A]  time = 0.183401, size = 147, normalized size = 0.98 \[ \frac{\frac{24 c^2 \tan ^{-1}\left (\frac{b+2 c (d+e x)^2}{\sqrt{4 a c-b^2}}\right )}{\sqrt{4 a c-b^2}}+\frac{\left (b^2-4 a c\right ) \left (-b-2 c (d+e x)^2\right )}{\left (a+b (d+e x)^2+c (d+e x)^4\right )^2}+\frac{6 c \left (b+2 c (d+e x)^2\right )}{a+b (d+e x)^2+c (d+e x)^4}}{4 e \left (b^2-4 a c\right )^2} \]

Antiderivative was successfully verified.

[In]

Integrate[(d + e*x)/(a + b*(d + e*x)^2 + c*(d + e*x)^4)^3,x]

[Out]

(((b^2 - 4*a*c)*(-b - 2*c*(d + e*x)^2))/(a + b*(d + e*x)^2 + c*(d + e*x)^4)^2 + (6*c*(b + 2*c*(d + e*x)^2))/(a
 + b*(d + e*x)^2 + c*(d + e*x)^4) + (24*c^2*ArcTan[(b + 2*c*(d + e*x)^2)/Sqrt[-b^2 + 4*a*c]])/Sqrt[-b^2 + 4*a*
c])/(4*(b^2 - 4*a*c)^2*e)

________________________________________________________________________________________

Maple [C]  time = 0.04, size = 541, normalized size = 3.6 \begin{align*}{\frac{1}{ \left ( c{e}^{4}{x}^{4}+4\,cd{e}^{3}{x}^{3}+6\,c{d}^{2}{e}^{2}{x}^{2}+4\,c{d}^{3}ex+b{e}^{2}{x}^{2}+c{d}^{4}+2\,bdex+b{d}^{2}+a \right ) ^{2}} \left ( 3\,{\frac{{c}^{3}{e}^{5}{x}^{6}}{16\,{a}^{2}{c}^{2}-8\,a{b}^{2}c+{b}^{4}}}+18\,{\frac{{c}^{3}d{e}^{4}{x}^{5}}{16\,{a}^{2}{c}^{2}-8\,a{b}^{2}c+{b}^{4}}}+{\frac{9\,{c}^{2}{e}^{3} \left ( 10\,c{d}^{2}+b \right ){x}^{4}}{32\,{a}^{2}{c}^{2}-16\,a{b}^{2}c+2\,{b}^{4}}}+6\,{\frac{{c}^{2}d{e}^{2} \left ( 10\,c{d}^{2}+3\,b \right ){x}^{3}}{16\,{a}^{2}{c}^{2}-8\,a{b}^{2}c+{b}^{4}}}+{\frac{ce \left ( 45\,{c}^{2}{d}^{4}+27\,c{d}^{2}b+5\,ac+{b}^{2} \right ){x}^{2}}{16\,{a}^{2}{c}^{2}-8\,a{b}^{2}c+{b}^{4}}}+2\,{\frac{cd \left ( 9\,{c}^{2}{d}^{4}+9\,c{d}^{2}b+5\,ac+{b}^{2} \right ) x}{16\,{a}^{2}{c}^{2}-8\,a{b}^{2}c+{b}^{4}}}+{\frac{12\,{c}^{3}{d}^{6}+18\,b{c}^{2}{d}^{4}+20\,a{c}^{2}{d}^{2}+4\,{b}^{2}c{d}^{2}+10\,abc-{b}^{3}}{4\,e \left ( 16\,{a}^{2}{c}^{2}-8\,a{b}^{2}c+{b}^{4} \right ) }} \right ) }+3\,{\frac{{c}^{2}}{e \left ( 16\,{a}^{2}{c}^{2}-8\,a{b}^{2}c+{b}^{4} \right ) }\sum _{{\it \_R}={\it RootOf} \left ( c{e}^{4}{{\it \_Z}}^{4}+4\,cd{e}^{3}{{\it \_Z}}^{3}+ \left ( 6\,c{d}^{2}{e}^{2}+b{e}^{2} \right ){{\it \_Z}}^{2}+ \left ( 4\,c{d}^{3}e+2\,bde \right ){\it \_Z}+c{d}^{4}+b{d}^{2}+a \right ) }{\frac{ \left ({\it \_R}\,e+d \right ) \ln \left ( x-{\it \_R} \right ) }{2\,c{e}^{3}{{\it \_R}}^{3}+6\,cd{e}^{2}{{\it \_R}}^{2}+6\,c{d}^{2}e{\it \_R}+2\,c{d}^{3}+be{\it \_R}+bd}}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((e*x+d)/(a+b*(e*x+d)^2+c*(e*x+d)^4)^3,x)

[Out]

(3*c^3*e^5/(16*a^2*c^2-8*a*b^2*c+b^4)*x^6+18*e^4*d*c^3/(16*a^2*c^2-8*a*b^2*c+b^4)*x^5+9/2*c^2*e^3*(10*c*d^2+b)
/(16*a^2*c^2-8*a*b^2*c+b^4)*x^4+6*c^2*d*e^2*(10*c*d^2+3*b)/(16*a^2*c^2-8*a*b^2*c+b^4)*x^3+c*e*(45*c^2*d^4+27*b
*c*d^2+5*a*c+b^2)/(16*a^2*c^2-8*a*b^2*c+b^4)*x^2+2*c*d*(9*c^2*d^4+9*b*c*d^2+5*a*c+b^2)/(16*a^2*c^2-8*a*b^2*c+b
^4)*x+1/4/e*(12*c^3*d^6+18*b*c^2*d^4+20*a*c^2*d^2+4*b^2*c*d^2+10*a*b*c-b^3)/(16*a^2*c^2-8*a*b^2*c+b^4))/(c*e^4
*x^4+4*c*d*e^3*x^3+6*c*d^2*e^2*x^2+4*c*d^3*e*x+b*e^2*x^2+c*d^4+2*b*d*e*x+b*d^2+a)^2+3*c^2/(16*a^2*c^2-8*a*b^2*
c+b^4)/e*sum((_R*e+d)/(2*_R^3*c*e^3+6*_R^2*c*d*e^2+6*_R*c*d^2*e+2*c*d^3+_R*b*e+b*d)*ln(x-_R),_R=RootOf(c*e^4*_
Z^4+4*c*d*e^3*_Z^3+(6*c*d^2*e^2+b*e^2)*_Z^2+(4*c*d^3*e+2*b*d*e)*_Z+c*d^4+b*d^2+a))

________________________________________________________________________________________

Maxima [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*x+d)/(a+b*(e*x+d)^2+c*(e*x+d)^4)^3,x, algorithm="maxima")

[Out]

Timed out

________________________________________________________________________________________

Fricas [B]  time = 3.31392, size = 7795, normalized size = 51.97 \begin{align*} \text{result too large to display} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*x+d)/(a+b*(e*x+d)^2+c*(e*x+d)^4)^3,x, algorithm="fricas")

[Out]

[1/4*(12*(b^2*c^3 - 4*a*c^4)*e^6*x^6 + 72*(b^2*c^3 - 4*a*c^4)*d*e^5*x^5 + 18*(b^3*c^2 - 4*a*b*c^3 + 10*(b^2*c^
3 - 4*a*c^4)*d^2)*e^4*x^4 + 12*(b^2*c^3 - 4*a*c^4)*d^6 + 24*(10*(b^2*c^3 - 4*a*c^4)*d^3 + 3*(b^3*c^2 - 4*a*b*c
^3)*d)*e^3*x^3 - b^5 + 14*a*b^3*c - 40*a^2*b*c^2 + 18*(b^3*c^2 - 4*a*b*c^3)*d^4 + 4*(b^4*c + a*b^2*c^2 - 20*a^
2*c^3 + 45*(b^2*c^3 - 4*a*c^4)*d^4 + 27*(b^3*c^2 - 4*a*b*c^3)*d^2)*e^2*x^2 + 4*(b^4*c + a*b^2*c^2 - 20*a^2*c^3
)*d^2 + 8*(9*(b^2*c^3 - 4*a*c^4)*d^5 + 9*(b^3*c^2 - 4*a*b*c^3)*d^3 + (b^4*c + a*b^2*c^2 - 20*a^2*c^3)*d)*e*x +
 12*(c^4*e^8*x^8 + 8*c^4*d*e^7*x^7 + 2*(14*c^4*d^2 + b*c^3)*e^6*x^6 + c^4*d^8 + 4*(14*c^4*d^3 + 3*b*c^3*d)*e^5
*x^5 + 2*b*c^3*d^6 + (70*c^4*d^4 + 30*b*c^3*d^2 + b^2*c^2 + 2*a*c^3)*e^4*x^4 + 4*(14*c^4*d^5 + 10*b*c^3*d^3 +
(b^2*c^2 + 2*a*c^3)*d)*e^3*x^3 + 2*a*b*c^2*d^2 + (b^2*c^2 + 2*a*c^3)*d^4 + 2*(14*c^4*d^6 + 15*b*c^3*d^4 + a*b*
c^2 + 3*(b^2*c^2 + 2*a*c^3)*d^2)*e^2*x^2 + a^2*c^2 + 4*(2*c^4*d^7 + 3*b*c^3*d^5 + a*b*c^2*d + (b^2*c^2 + 2*a*c
^3)*d^3)*e*x)*sqrt(b^2 - 4*a*c)*log((2*c^2*e^4*x^4 + 8*c^2*d*e^3*x^3 + 2*c^2*d^4 + 2*(6*c^2*d^2 + b*c)*e^2*x^2
 + 2*b*c*d^2 + 4*(2*c^2*d^3 + b*c*d)*e*x + b^2 - 2*a*c - (2*c*e^2*x^2 + 4*c*d*e*x + 2*c*d^2 + b)*sqrt(b^2 - 4*
a*c))/(c*e^4*x^4 + 4*c*d*e^3*x^3 + c*d^4 + (6*c*d^2 + b)*e^2*x^2 + b*d^2 + 2*(2*c*d^3 + b*d)*e*x + a)))/((b^6*
c^2 - 12*a*b^4*c^3 + 48*a^2*b^2*c^4 - 64*a^3*c^5)*e^9*x^8 + 8*(b^6*c^2 - 12*a*b^4*c^3 + 48*a^2*b^2*c^4 - 64*a^
3*c^5)*d*e^8*x^7 + 2*(b^7*c - 12*a*b^5*c^2 + 48*a^2*b^3*c^3 - 64*a^3*b*c^4 + 14*(b^6*c^2 - 12*a*b^4*c^3 + 48*a
^2*b^2*c^4 - 64*a^3*c^5)*d^2)*e^7*x^6 + 4*(14*(b^6*c^2 - 12*a*b^4*c^3 + 48*a^2*b^2*c^4 - 64*a^3*c^5)*d^3 + 3*(
b^7*c - 12*a*b^5*c^2 + 48*a^2*b^3*c^3 - 64*a^3*b*c^4)*d)*e^6*x^5 + (b^8 - 10*a*b^6*c + 24*a^2*b^4*c^2 + 32*a^3
*b^2*c^3 - 128*a^4*c^4 + 70*(b^6*c^2 - 12*a*b^4*c^3 + 48*a^2*b^2*c^4 - 64*a^3*c^5)*d^4 + 30*(b^7*c - 12*a*b^5*
c^2 + 48*a^2*b^3*c^3 - 64*a^3*b*c^4)*d^2)*e^5*x^4 + 4*(14*(b^6*c^2 - 12*a*b^4*c^3 + 48*a^2*b^2*c^4 - 64*a^3*c^
5)*d^5 + 10*(b^7*c - 12*a*b^5*c^2 + 48*a^2*b^3*c^3 - 64*a^3*b*c^4)*d^3 + (b^8 - 10*a*b^6*c + 24*a^2*b^4*c^2 +
32*a^3*b^2*c^3 - 128*a^4*c^4)*d)*e^4*x^3 + 2*(a*b^7 - 12*a^2*b^5*c + 48*a^3*b^3*c^2 - 64*a^4*b*c^3 + 14*(b^6*c
^2 - 12*a*b^4*c^3 + 48*a^2*b^2*c^4 - 64*a^3*c^5)*d^6 + 15*(b^7*c - 12*a*b^5*c^2 + 48*a^2*b^3*c^3 - 64*a^3*b*c^
4)*d^4 + 3*(b^8 - 10*a*b^6*c + 24*a^2*b^4*c^2 + 32*a^3*b^2*c^3 - 128*a^4*c^4)*d^2)*e^3*x^2 + 4*(2*(b^6*c^2 - 1
2*a*b^4*c^3 + 48*a^2*b^2*c^4 - 64*a^3*c^5)*d^7 + 3*(b^7*c - 12*a*b^5*c^2 + 48*a^2*b^3*c^3 - 64*a^3*b*c^4)*d^5
+ (b^8 - 10*a*b^6*c + 24*a^2*b^4*c^2 + 32*a^3*b^2*c^3 - 128*a^4*c^4)*d^3 + (a*b^7 - 12*a^2*b^5*c + 48*a^3*b^3*
c^2 - 64*a^4*b*c^3)*d)*e^2*x + ((b^6*c^2 - 12*a*b^4*c^3 + 48*a^2*b^2*c^4 - 64*a^3*c^5)*d^8 + a^2*b^6 - 12*a^3*
b^4*c + 48*a^4*b^2*c^2 - 64*a^5*c^3 + 2*(b^7*c - 12*a*b^5*c^2 + 48*a^2*b^3*c^3 - 64*a^3*b*c^4)*d^6 + (b^8 - 10
*a*b^6*c + 24*a^2*b^4*c^2 + 32*a^3*b^2*c^3 - 128*a^4*c^4)*d^4 + 2*(a*b^7 - 12*a^2*b^5*c + 48*a^3*b^3*c^2 - 64*
a^4*b*c^3)*d^2)*e), 1/4*(12*(b^2*c^3 - 4*a*c^4)*e^6*x^6 + 72*(b^2*c^3 - 4*a*c^4)*d*e^5*x^5 + 18*(b^3*c^2 - 4*a
*b*c^3 + 10*(b^2*c^3 - 4*a*c^4)*d^2)*e^4*x^4 + 12*(b^2*c^3 - 4*a*c^4)*d^6 + 24*(10*(b^2*c^3 - 4*a*c^4)*d^3 + 3
*(b^3*c^2 - 4*a*b*c^3)*d)*e^3*x^3 - b^5 + 14*a*b^3*c - 40*a^2*b*c^2 + 18*(b^3*c^2 - 4*a*b*c^3)*d^4 + 4*(b^4*c
+ a*b^2*c^2 - 20*a^2*c^3 + 45*(b^2*c^3 - 4*a*c^4)*d^4 + 27*(b^3*c^2 - 4*a*b*c^3)*d^2)*e^2*x^2 + 4*(b^4*c + a*b
^2*c^2 - 20*a^2*c^3)*d^2 + 8*(9*(b^2*c^3 - 4*a*c^4)*d^5 + 9*(b^3*c^2 - 4*a*b*c^3)*d^3 + (b^4*c + a*b^2*c^2 - 2
0*a^2*c^3)*d)*e*x - 24*(c^4*e^8*x^8 + 8*c^4*d*e^7*x^7 + 2*(14*c^4*d^2 + b*c^3)*e^6*x^6 + c^4*d^8 + 4*(14*c^4*d
^3 + 3*b*c^3*d)*e^5*x^5 + 2*b*c^3*d^6 + (70*c^4*d^4 + 30*b*c^3*d^2 + b^2*c^2 + 2*a*c^3)*e^4*x^4 + 4*(14*c^4*d^
5 + 10*b*c^3*d^3 + (b^2*c^2 + 2*a*c^3)*d)*e^3*x^3 + 2*a*b*c^2*d^2 + (b^2*c^2 + 2*a*c^3)*d^4 + 2*(14*c^4*d^6 +
15*b*c^3*d^4 + a*b*c^2 + 3*(b^2*c^2 + 2*a*c^3)*d^2)*e^2*x^2 + a^2*c^2 + 4*(2*c^4*d^7 + 3*b*c^3*d^5 + a*b*c^2*d
 + (b^2*c^2 + 2*a*c^3)*d^3)*e*x)*sqrt(-b^2 + 4*a*c)*arctan(-(2*c*e^2*x^2 + 4*c*d*e*x + 2*c*d^2 + b)*sqrt(-b^2
+ 4*a*c)/(b^2 - 4*a*c)))/((b^6*c^2 - 12*a*b^4*c^3 + 48*a^2*b^2*c^4 - 64*a^3*c^5)*e^9*x^8 + 8*(b^6*c^2 - 12*a*b
^4*c^3 + 48*a^2*b^2*c^4 - 64*a^3*c^5)*d*e^8*x^7 + 2*(b^7*c - 12*a*b^5*c^2 + 48*a^2*b^3*c^3 - 64*a^3*b*c^4 + 14
*(b^6*c^2 - 12*a*b^4*c^3 + 48*a^2*b^2*c^4 - 64*a^3*c^5)*d^2)*e^7*x^6 + 4*(14*(b^6*c^2 - 12*a*b^4*c^3 + 48*a^2*
b^2*c^4 - 64*a^3*c^5)*d^3 + 3*(b^7*c - 12*a*b^5*c^2 + 48*a^2*b^3*c^3 - 64*a^3*b*c^4)*d)*e^6*x^5 + (b^8 - 10*a*
b^6*c + 24*a^2*b^4*c^2 + 32*a^3*b^2*c^3 - 128*a^4*c^4 + 70*(b^6*c^2 - 12*a*b^4*c^3 + 48*a^2*b^2*c^4 - 64*a^3*c
^5)*d^4 + 30*(b^7*c - 12*a*b^5*c^2 + 48*a^2*b^3*c^3 - 64*a^3*b*c^4)*d^2)*e^5*x^4 + 4*(14*(b^6*c^2 - 12*a*b^4*c
^3 + 48*a^2*b^2*c^4 - 64*a^3*c^5)*d^5 + 10*(b^7*c - 12*a*b^5*c^2 + 48*a^2*b^3*c^3 - 64*a^3*b*c^4)*d^3 + (b^8 -
 10*a*b^6*c + 24*a^2*b^4*c^2 + 32*a^3*b^2*c^3 - 128*a^4*c^4)*d)*e^4*x^3 + 2*(a*b^7 - 12*a^2*b^5*c + 48*a^3*b^3
*c^2 - 64*a^4*b*c^3 + 14*(b^6*c^2 - 12*a*b^4*c^3 + 48*a^2*b^2*c^4 - 64*a^3*c^5)*d^6 + 15*(b^7*c - 12*a*b^5*c^2
 + 48*a^2*b^3*c^3 - 64*a^3*b*c^4)*d^4 + 3*(b^8 - 10*a*b^6*c + 24*a^2*b^4*c^2 + 32*a^3*b^2*c^3 - 128*a^4*c^4)*d
^2)*e^3*x^2 + 4*(2*(b^6*c^2 - 12*a*b^4*c^3 + 48*a^2*b^2*c^4 - 64*a^3*c^5)*d^7 + 3*(b^7*c - 12*a*b^5*c^2 + 48*a
^2*b^3*c^3 - 64*a^3*b*c^4)*d^5 + (b^8 - 10*a*b^6*c + 24*a^2*b^4*c^2 + 32*a^3*b^2*c^3 - 128*a^4*c^4)*d^3 + (a*b
^7 - 12*a^2*b^5*c + 48*a^3*b^3*c^2 - 64*a^4*b*c^3)*d)*e^2*x + ((b^6*c^2 - 12*a*b^4*c^3 + 48*a^2*b^2*c^4 - 64*a
^3*c^5)*d^8 + a^2*b^6 - 12*a^3*b^4*c + 48*a^4*b^2*c^2 - 64*a^5*c^3 + 2*(b^7*c - 12*a*b^5*c^2 + 48*a^2*b^3*c^3
- 64*a^3*b*c^4)*d^6 + (b^8 - 10*a*b^6*c + 24*a^2*b^4*c^2 + 32*a^3*b^2*c^3 - 128*a^4*c^4)*d^4 + 2*(a*b^7 - 12*a
^2*b^5*c + 48*a^3*b^3*c^2 - 64*a^4*b*c^3)*d^2)*e)]

________________________________________________________________________________________

Sympy [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*x+d)/(a+b*(e*x+d)**2+c*(e*x+d)**4)**3,x)

[Out]

Timed out

________________________________________________________________________________________

Giac [B]  time = 17.1234, size = 873, normalized size = 5.82 \begin{align*} \frac{3 \,{\left (b^{4} c^{2} e - 8 \, a b^{2} c^{3} e + 16 \, a^{2} c^{4} e\right )} \sqrt{b^{2} - 4 \, a c} \log \left ({\left |{\left (b + \sqrt{b^{2} - 4 \, a c}\right )} x^{2} e^{2} + 2 \,{\left (b + \sqrt{b^{2} - 4 \, a c}\right )} d x e +{\left (b + \sqrt{b^{2} - 4 \, a c}\right )} d^{2} + 2 \, a \right |}\right )}{b^{10} e^{2} - 20 \, a b^{8} c e^{2} + 160 \, a^{2} b^{6} c^{2} e^{2} - 640 \, a^{3} b^{4} c^{3} e^{2} + 1280 \, a^{4} b^{2} c^{4} e^{2} - 1024 \, a^{5} c^{5} e^{2}} - \frac{3 \,{\left (b^{4} c^{2} e - 8 \, a b^{2} c^{3} e + 16 \, a^{2} c^{4} e\right )} \sqrt{b^{2} - 4 \, a c} \log \left ({\left | -{\left (b - \sqrt{b^{2} - 4 \, a c}\right )} x^{2} e^{2} - 2 \,{\left (b - \sqrt{b^{2} - 4 \, a c}\right )} d x e -{\left (b - \sqrt{b^{2} - 4 \, a c}\right )} d^{2} - 2 \, a \right |}\right )}{b^{10} e^{2} - 20 \, a b^{8} c e^{2} + 160 \, a^{2} b^{6} c^{2} e^{2} - 640 \, a^{3} b^{4} c^{3} e^{2} + 1280 \, a^{4} b^{2} c^{4} e^{2} - 1024 \, a^{5} c^{5} e^{2}} + \frac{12 \, c^{3} x^{6} e^{6} + 72 \, c^{3} d x^{5} e^{5} + 180 \, c^{3} d^{2} x^{4} e^{4} + 240 \, c^{3} d^{3} x^{3} e^{3} + 180 \, c^{3} d^{4} x^{2} e^{2} + 72 \, c^{3} d^{5} x e + 12 \, c^{3} d^{6} + 18 \, b c^{2} x^{4} e^{4} + 72 \, b c^{2} d x^{3} e^{3} + 108 \, b c^{2} d^{2} x^{2} e^{2} + 72 \, b c^{2} d^{3} x e + 18 \, b c^{2} d^{4} + 4 \, b^{2} c x^{2} e^{2} + 20 \, a c^{2} x^{2} e^{2} + 8 \, b^{2} c d x e + 40 \, a c^{2} d x e + 4 \, b^{2} c d^{2} + 20 \, a c^{2} d^{2} - b^{3} + 10 \, a b c}{4 \,{\left (c x^{4} e^{4} + 4 \, c d x^{3} e^{3} + 6 \, c d^{2} x^{2} e^{2} + 4 \, c d^{3} x e + c d^{4} + b x^{2} e^{2} + 2 \, b d x e + b d^{2} + a\right )}^{2}{\left (b^{4} e - 8 \, a b^{2} c e + 16 \, a^{2} c^{2} e\right )}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*x+d)/(a+b*(e*x+d)^2+c*(e*x+d)^4)^3,x, algorithm="giac")

[Out]

3*(b^4*c^2*e - 8*a*b^2*c^3*e + 16*a^2*c^4*e)*sqrt(b^2 - 4*a*c)*log(abs((b + sqrt(b^2 - 4*a*c))*x^2*e^2 + 2*(b
+ sqrt(b^2 - 4*a*c))*d*x*e + (b + sqrt(b^2 - 4*a*c))*d^2 + 2*a))/(b^10*e^2 - 20*a*b^8*c*e^2 + 160*a^2*b^6*c^2*
e^2 - 640*a^3*b^4*c^3*e^2 + 1280*a^4*b^2*c^4*e^2 - 1024*a^5*c^5*e^2) - 3*(b^4*c^2*e - 8*a*b^2*c^3*e + 16*a^2*c
^4*e)*sqrt(b^2 - 4*a*c)*log(abs(-(b - sqrt(b^2 - 4*a*c))*x^2*e^2 - 2*(b - sqrt(b^2 - 4*a*c))*d*x*e - (b - sqrt
(b^2 - 4*a*c))*d^2 - 2*a))/(b^10*e^2 - 20*a*b^8*c*e^2 + 160*a^2*b^6*c^2*e^2 - 640*a^3*b^4*c^3*e^2 + 1280*a^4*b
^2*c^4*e^2 - 1024*a^5*c^5*e^2) + 1/4*(12*c^3*x^6*e^6 + 72*c^3*d*x^5*e^5 + 180*c^3*d^2*x^4*e^4 + 240*c^3*d^3*x^
3*e^3 + 180*c^3*d^4*x^2*e^2 + 72*c^3*d^5*x*e + 12*c^3*d^6 + 18*b*c^2*x^4*e^4 + 72*b*c^2*d*x^3*e^3 + 108*b*c^2*
d^2*x^2*e^2 + 72*b*c^2*d^3*x*e + 18*b*c^2*d^4 + 4*b^2*c*x^2*e^2 + 20*a*c^2*x^2*e^2 + 8*b^2*c*d*x*e + 40*a*c^2*
d*x*e + 4*b^2*c*d^2 + 20*a*c^2*d^2 - b^3 + 10*a*b*c)/((c*x^4*e^4 + 4*c*d*x^3*e^3 + 6*c*d^2*x^2*e^2 + 4*c*d^3*x
*e + c*d^4 + b*x^2*e^2 + 2*b*d*x*e + b*d^2 + a)^2*(b^4*e - 8*a*b^2*c*e + 16*a^2*c^2*e))